Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Front Endocrinol (Lausanne) ; 14: 1136997, 2023.
Article in English | MEDLINE | ID: covidwho-2307202
2.
Front Med (Lausanne) ; 9: 933996, 2022.
Article in English | MEDLINE | ID: covidwho-2065573

ABSTRACT

Introduction: Few data exist regarding the immunogenicity of the third dose of BNT162b2 relative to the second dose in patients with inflammatory bowel disease (IBD) on different immunosuppressive therapies. We investigated the immunogenicity of BNT162b2 vaccine booster dose in patients with IBD on infliximab combination therapy. Method: This is a prospective single-center observational study conducted from January 1, 2022 to February 28, 2022. Patients were recruited at the time of attendance at the infusion center. Eligibility criteria included patients with a confirmed diagnosis of IBD who are receiving infliximab with azathioprine or 6-mercaptopurine. Patients who received two doses of BNT162b2 vaccine (second dose group) were compared to patients who had received three doses of BNT162b2 vaccine [third dose (booster) group]. Patients were excluded if they were infected or had symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) previously since the start of the pandemic or received other vaccines than the BNT162b2. Our primary outcome was the concentrations of SARS-CoV-2 antibodies Immunoglobulin G (IgG) and neutralizing antibodies 40-45 weeks from the first dose of BNT162b2 vaccine in patients with IBD receiving infliximab combination therapy. Medians with interquartile range (IQR) were calculated. Results: In total, 162 patients with IBD and receiving infliximab combination therapy were recruited, and the number of patients in both the second dose group and third dose (booster) group was 81. Mean age was 35 years old in both groups. Median (IQR) SARS-CoV-2 IgG levels were significantly lower after the second dose [125 BAU/ml (43, 192)] compared to patients who received the third booster dose [207 BAU/ml (181, 234)] (P = 0.003). Neutralizing antibody levels were also lower after the second dose [80% (21, 95)] compared to patients who received the third booster dose [96% (93, 99)] (P ≤ 0.001). The percentage of patients who achieved positive SARS-CoV-2 IgG levels in the third (booster) dose group was 96.3%, whereas it was 86.4% in the second dose group. The percentage of participants who received the third (booster) dose and achieved a positive SARS-CoV-2-neutralizing antibody level was 100%, whereas it was 88.9% in the participants who received the second dose only. Conclusion: Most patients with IBD on infliximab combination therapy had positive SARS-CoV-2 IgG and neutralizing antibody concentrations 40-45 weeks post BNT162b2 vaccination. However, SARS-CoV-2 IgG and neutralizing antibody concentrations were lower in patients who received two doses only compared to patients who received a third dose. A longer follow-up study is needed to evaluate decay in antibodies over time.

3.
Front Med (Lausanne) ; 9: 881027, 2022.
Article in English | MEDLINE | ID: covidwho-2032791

ABSTRACT

Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination has been effective in protecting against severe COVID-19 infections and related mortality. It is recommended for all individuals including patients with inflammatory bowel disease (IBD). However, safety data are lacking in this group of patients. Therefore, we aim to evaluate the short- and long-term vaccine related adverse events (AEs) in patients with IBD. Methods: This is a prospective, observational cohort study investigating short- and long-term AEs related to the BNT162b2 vaccine in patients with IBD (study group) after the first and second dose compared to healthy participants (control group). Patients were recruited at the time of attendance to the clinic or infusion rooms. Short term (<3 weeks) localized and systemic AEs were assessed via questionnaire. Follow-up phone-based survey was made to collect data on long term (up to 24 weeks) AEs. Results: A total of 408 patients answered the questionnaires, 204 patients in each group, the study and control group. No serious adverse events were reported in either the study or the control group after the first or the second dose. Participants in the control group reported more frequent pain at the injection site than those in the study group after the first dose [58 (57%) vs. 38 (37%) respectively, P = 0.005]. After the second dose, tiredness was reported more frequently in the control group [49 (48%)] compared to the study group [25 (24%) (P < 0.001)]. At 20-24 weeks post vaccination, 386 out of 408 (94.6%) patients were willing to participate in the follow-up phone based questionnaire [196 (96.1%) in the study group vs. 190 (93.1%) in the control group]. In both groups, none of the patients reported local, systemic, or severe adverse events (0 out of 386) at week 20-24 post second dose. Conclusion: The BNT162b2 vaccine is safe in patients with IBD. No severe or long-term adverse events were reported in our study. The frequency of local and systemic adverse events after the second dose was generally higher among healthy participants compared to patients with IBD. Further studies including a larger cohort with a longer follow-up duration are needed to assess for possible rare adverse events.

4.
Front Endocrinol (Lausanne) ; 13: 933562, 2022.
Article in English | MEDLINE | ID: covidwho-1987484
5.
Vaccines (Basel) ; 10(8)2022 Jul 31.
Article in English | MEDLINE | ID: covidwho-1969540

ABSTRACT

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) is associated with increased risk of thrombosis and thromboembolism. Exposure to COVID-19 vaccines is also associated with immune thrombotic thrombocytopenia, ischemic stroke, intracerebral haemorrhage, and cerebral venous thrombosis, and it is linked with systemic activation of coagulation. METHODS: We assess the circulating levels of coagulation factors (factors XI, XII, XIII, and prothrombin) and antithrombin in individuals who completed two doses of either ChAdOx1-S or BNT162b2 COVID-19 vaccine, within the timeframe of two months, who had no previous history of COVID-19. RESULTS: Elevated levels of factors XI, XII, XIII, prothrombin, and antithrombin were seen compared to unvaccinated controls. Levels of coagulation factors, antithrombin, and prothrombin to antithrombin ratio were higher with BNT162b2 compared to ChAdOx1-S vaccine. CONCLUSIONS: The clinical significance of such coagulation homeostasis disruption remains to be elucidated but it is worthy of global scientific follow-up effort.

6.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-1940250

ABSTRACT

Introduction Few data exist regarding the immunogenicity of the third dose of BNT162b2 relative to the second dose in patients with inflammatory bowel disease (IBD) on different immunosuppressive therapies. We investigated the immunogenicity of BNT162b2 vaccine booster dose in patients with IBD on infliximab combination therapy. Method This is a prospective single-center observational study conducted from January 1, 2022 to February 28, 2022. Patients were recruited at the time of attendance at the infusion center. Eligibility criteria included patients with a confirmed diagnosis of IBD who are receiving infliximab with azathioprine or 6-mercaptopurine. Patients who received two doses of BNT162b2 vaccine (second dose group) were compared to patients who had received three doses of BNT162b2 vaccine [third dose (booster) group]. Patients were excluded if they were infected or had symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) previously since the start of the pandemic or received other vaccines than the BNT162b2. Our primary outcome was the concentrations of SARS-CoV-2 antibodies Immunoglobulin G (IgG) and neutralizing antibodies 40–45 weeks from the first dose of BNT162b2 vaccine in patients with IBD receiving infliximab combination therapy. Medians with interquartile range (IQR) were calculated. Results In total, 162 patients with IBD and receiving infliximab combination therapy were recruited, and the number of patients in both the second dose group and third dose (booster) group was 81. Mean age was 35 years old in both groups. Median (IQR) SARS-CoV-2 IgG levels were significantly lower after the second dose [125 BAU/ml (43, 192)] compared to patients who received the third booster dose [207 BAU/ml (181, 234)] (P = 0.003). Neutralizing antibody levels were also lower after the second dose [80% (21, 95)] compared to patients who received the third booster dose [96% (93, 99)] (P ≤ 0.001). The percentage of patients who achieved positive SARS-CoV-2 IgG levels in the third (booster) dose group was 96.3%, whereas it was 86.4% in the second dose group. The percentage of participants who received the third (booster) dose and achieved a positive SARS-CoV-2-neutralizing antibody level was 100%, whereas it was 88.9% in the participants who received the second dose only. Conclusion Most patients with IBD on infliximab combination therapy had positive SARS-CoV-2 IgG and neutralizing antibody concentrations 40–45 weeks post BNT162b2 vaccination. However, SARS-CoV-2 IgG and neutralizing antibody concentrations were lower in patients who received two doses only compared to patients who received a third dose. A longer follow-up study is needed to evaluate decay in antibodies over time.

7.
Frontiers in endocrinology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1904368
8.
Diabetes Metab Res Rev ; 38(5): e3526, 2022 07.
Article in English | MEDLINE | ID: covidwho-1729121

ABSTRACT

OBJECTIVE: To build a clinical risk score to aid risk stratification among hospitalised COVID-19 patients. METHODS: The score was built using data of 417 consecutive COVID-19 in patients from Kuwait. Risk factors for COVID-19 mortality were identified by multivariate logistic regressions and assigned weighted points proportional to their beta coefficient values. A final score was obtained for each patient and tested against death to calculate an Receiver-operating characteristic curve. Youden's index was used to determine the cut-off value for death prediction risk. The score was internally validated using another COVID-19 Kuwaiti-patient cohort of 923 patients. External validation was carried out using 178 patients from the Italian CoViDiab cohort. RESULTS: Deceased COVID-19 patients more likely showed glucose levels of 7.0-11.1 mmol/L (34.4%, p < 0.0001) or >11.1 mmol/L (44.3%, p < 0.0001), and comorbidities such as diabetes and hypertension compared to those who survived (39.3% vs. 20.4% [p = 0.0027] and 45.9% vs. 26.6% [p = 0.0036], respectively). The risk factors for in-hospital mortality in the final model were gender, nationality, asthma, and glucose categories (<5.0, 5.5-6.9, 7.0-11.1, or 11.1 > mmol/L). A score of ≥5.5 points predicted death with 75% sensitivity and 86.3% specificity (area under the curve (AUC) 0.901). Internal validation resulted in an AUC of 0.826, and external validation showed an AUC of 0.687. CONCLUSION: This clinical risk score was built with easy-to-collect data and had good probability of predicting in-hospital death among COVID-19 patients.


Subject(s)
COVID-19 , Glucose , Hospital Mortality , Humans , Prognosis , ROC Curve , Retrospective Studies , Risk Factors
9.
Front Public Health ; 9: 778243, 2021.
Article in English | MEDLINE | ID: covidwho-1581109

ABSTRACT

Background: The emergence of new COVID-19 variants of concern coupled with a global inequity in vaccine access and distribution has prompted many public health authorities to circumvent the vaccine shortages by altering vaccination protocols and prioritizing persons at high risk. Individuals with previous COVID-19 infection may not have been prioritized due to existing humoral immunity. Objective: We aimed to study the association between previous COVID-19 infection and antibody levels after COVID-19 vaccination. Methods: A serological analysis to measure SARS-CoV-2 immunoglobulin (Ig)G, IgA, and neutralizing antibodies was performed on individuals who received one or two doses of either BNT162b2 or ChAdOx1 vaccines in Kuwait. A Student t-test was performed and followed by generalized linear regression models adjusted for individual characteristics and comorbidities were fitted to compare the average levels of IgG and neutralizing antibodies between vaccinated individuals with and without previous COVID-19 infection. Results: A total of 1,025 individuals were recruited. The mean levels of IgG, IgA, and neutralizing antibodies were higher in vaccinated subjects with previous COVID-19 infections than in those without previous infection. Regression analysis showed a steeper slope of decline for IgG and neutralizing antibodies in vaccinated individuals without previous COVID-19 infection compared to those with previous COVID-19 infection. Conclusion: Previous COVID-19 infection appeared to elicit robust and sustained levels of SARS-CoV-2 antibodies in vaccinated individuals. Given the inconsistent supply of COVID-19 vaccines in many countries due to inequities in global distribution, our results suggest that even greater efforts should be made to vaccinate more people, especially individuals without previous COVID-19 infection.


Subject(s)
COVID-19 Vaccines , COVID-19 , BNT162 Vaccine , Humans , SARS-CoV-2 , Vaccination
10.
Vaccines (Basel) ; 9(12)2021 Dec 13.
Article in English | MEDLINE | ID: covidwho-1572689

ABSTRACT

Introduction: The immunogenicity of SARS-CoV-2 vaccines in patients with inflammatory bowel disease (IBD) on biologic therapies is not well studied. The goal of this study was to measure the serological response to BNT162b2 and ChAdOx1 nCoV-19 vaccines in patients with IBD receiving different biologic therapies. Methods: We performed a multi-center prospective study between 1 August 2021 and 15 September 2021. We measured the seropositivity of SARS-CoV-2 antibodies (SARS-CoV-2 IgG) and neutralizing antibody concentrations in patients with IBD receiving biologic therapies 4-10 weeks after their second dose or 3-6 weeks after their first dose of BNT162b2 or ChAdOx1 nCoV-19 vaccines. Results: A total of 126 patients were enrolled (mean age, 31 years; 60% male; 71% Crohn's disease, 29% ulcerative colitis). Of these, 92 patients were vaccinated with the BNT162b2 vaccine (73%) and 34 patients with the ChAdOx1 nCoV-19 vaccine (27%). In patients being treated with infliximab and adalimumab, the proportion of patients who achieved positive anti-SARS-CoV-2 IgG antibody levels after receiving two doses of the vaccine were 44 out of 59 patients (74.5%) and 13 out of 16 patients (81.2%), respectively. In contrast, of those receiving ustekinumab and vedolizumab, the proportion of patients who achieved positive anti-SARS-CoV-2 IgG antibody levels after receiving two doses of the vaccine were 100% and 92.8%, respectively. In patients receiving infliximab and adalimumab, the proportion of patients who had positive anti-SARS-CoV-2 neutralizing antibody levels after two-dose vaccination was 40 out of 59 patients (67.7%) and 14 out 16 patients (87.5%), respectively. On the other hand, the proportion of patients who had positive anti-SARS-CoV-2 neutralizing antibody levels were 12 out of 13 patients (92.3%) and 13 out of 14 patients (92.8%) in patients receiving ustekinumab and vedolizumab, respectively. Conclusions: The majority of patients with IBD who were on infliximab, adalimumab, and vedolizumab seroconverted after two doses of SARS-CoV-2 vaccination. All patients on ustekinumab seroconverted after two doses of SARS-CoV-2 vaccine. The BNT162b2 and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines are both likely to be effective after two doses in patients with IBD on biologics. Larger follow-up studies are needed to evaluate if decay of antibodies occurs over time.

11.
Frontiers in immunology ; 12, 2021.
Article in English | EuropePMC | ID: covidwho-1563796

ABSTRACT

The emergence of effective vaccines for COVID-19 has been welcomed by the world with great optimism. Given their increased susceptibility to COVID-19, the question arises whether individuals with type-2 diabetes mellitus (T2DM) and other metabolic conditions can respond effectively to the mRNA-based vaccine. We aimed to evaluate the levels of anti-SARS-CoV-2 IgG and neutralizing antibodies in people with T2DM and/or other metabolic risk factors (hypertension and obesity) compared to those without. This study included 262 people (81 diabetic and 181 non-diabetic persons) that took two doses of BNT162b2 (Pfizer–BioNTech) mRNA vaccine. Both T2DM and non-diabetic individuals had a robust response to vaccination as demonstrated by their high antibody titers. However, both SARS-CoV-2 IgG and neutralizing antibodies titers were lower in people with T2DM. The mean ( ± 1 standard deviation) levels were 154 ± 49.1 vs. 138 ± 59.4 BAU/ml for IgG and 87.1 ± 11.6 vs. 79.7 ± 19.5% for neutralizing antibodies in individuals without diabetes compared to those with T2DM, respectively. In a multiple linear regression adjusted for individual characteristics, comorbidities, previous COVID-19 infection, and duration since second vaccine dose, diabetics had 13.86 BAU/ml (95% CI: 27.08 to 0.64 BAU/ml, p=0.041) less IgG antibodies and 4.42% (95% CI: 8.53 to 0.32%, p=0.036) fewer neutralizing antibodies than non-diabetics. Hypertension and obesity did not show significant changes in antibody titers. Taken together, both type-2 diabetic and non-diabetic individuals elicited strong immune responses to SARS-CoV-2 BNT162b2 mRNA vaccine;nonetheless, lower levels were seen in people with diabetes. Continuous monitoring of the antibody levels might be a good indicator to guide personalized needs for further booster shots to maintain adaptive immunity. Nonetheless, it is important that people get their COVID-19 vaccination especially people with diabetes.

12.
J Clin Med ; 10(22)2021 Nov 18.
Article in English | MEDLINE | ID: covidwho-1524042

ABSTRACT

BACKGROUND: Vaccination is a promising strategy to protect vulnerable groups like inflammatory bowel disease (IBD) patients against COVID-19 and associated severe outcomes. COVID-19 vaccine clinical trials excluded IBD patients taking infliximab with azathioprine or 6-mercaptopurine (infliximab combination). Therefore, we sought to evaluate serologic responses to COVID-19 vaccination with the mRNA vaccine, BNT162b2, in patients with IBD receiving infliximab combination therapy compared with healthy participants. METHOD: This was a multicenter prospective study. Patients with IBD were recruited at the time of attendance at infusion center between 1 August 2021, and 15 September 2021. Our primary outcome were the concentrations of SARS-CoV-2 antibodies 4-10 weeks after vaccination with two doses of BNT162b2 vaccine in patients with IBD taking infliximab combination therapy (study group) compared with a healthy participants group (control group). Both study and control groups were matched for age, sex, and time-since-last-vaccine-dose using optimal pair-matching method. RESULTS: In total, 116 participants were recruited in the study, 58 patients in the study group and 58 in the control group. Median (IQR) IgG concentrations were lower in the study group (99 BAU/mL (40, 177)) than the control group (139 BAU/mL (120, 188)) following vaccination (p = 0.0032). Neutralizing antibodies were also lower in the study group compared with the control group (64% (23, 94) vs. 91% (85, 94), p < 0.001). The median IgA levels in the study group were also significantly lower when compared with the control group (6 U/mL (3, 34) vs. 13 U/mL (7, 30), p = 0.0097). In the study group, the percentages of patients who achieved positive IgG, neutralizing antibody and IgA levels were 81%, 75%, and 40%, respectively. In the control group, all participants (100%) had positive IgG and neutralizing antibody levels while 62% had positive IgA levels. CONCLUSION: In patients with IBD receiving infliximab combination therapy, SARS-CoV2 IgG, IgA, and neutralizing antibody levels after BNT162b2 vaccination were lower compared with healthy participants. However, most patients treated with infliximab combination therapy seroconverted after two doses of the vaccine.

13.
Surg Obes Relat Dis ; 16(12): 1910-1918, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1454528

ABSTRACT

BACKGROUND: Bariatric surgery is well established as a treatment for obesity and associated complications. This procedure improves metabolic homeostasis through changes in energy expenditure. We hypothesized that sleeve gastrectomy (SG) improves metabolic homeostasis by modulating energy expenditure and enhancing thermogenesis through increasing the expression level of meteorin-like protein (METRNL) and fibronectin type III domain-containing protein 5 (FNDC5/Irisin) through uncoupling proteins 1/2/3 (UCP1, UCP2, and UCP3). OBJECTIVES: To study the effect of SG on the levels of proteins involved in thermogenesis process. SETTING: Laboratory rats at Kuwait University. METHODS: Male Sprague-Dawley rats, aged 4 to 5 weeks, were divided into 2 groups, control (n = 11) and diet-induced obesity (DIO) (n = 22). The control group was fed regular rat chow ad libitum, whereas the DIO group was fed cafeteria diet "high-fat/carbohydrate diet" ad libitum. At 21 weeks, rats in the DIO group that weighed 20% more than the control group animals underwent surgery. These rats were randomly subdivided into Sham and SG operation groups. Gene expression was evaluated, and enzyme-linked immunosorbent assays were employed to assess the changes in gene and protein levels in tissue and circulation. RESULTS: The protein expression data revealed an increase in METRNL levels in the muscles and white adipose tissue of SG animals. METRNL level in circulation in SG animals was reduced compared with control and Sham rats. The level of Irisin increased in the muscle of SG animals compared with the control and Sham group animals; however, a decrease in Irisin level was observed in the white adipose tissue and brown adipose tissue of SG animals compared with controls. Gene expression analysis revealed decreased METRNL levels in muscle tissues in the SG group compared with the control group animals. Increased expression of FNDC5 (Irisin), UCP2, and UCP3 in the muscle tissue of SG animals was also observed. Furthermore, the levels of UCP1, UCP2, UCP3, and METRNL in the brown adipose tissue of SG animals were upregulated. No significant alteration in the gene expression of Irisin was observed in brown adipose tissue. CONCLUSIONS: Sleeve gastrectomy induces weight loss through complex mechanisms that may include browning of fat.


Subject(s)
Adipose Tissue, Brown , Obesity , Adipose Tissue/metabolism , Animals , Diet , Fibronectins/genetics , Fibronectins/metabolism , Gastrectomy , Kuwait , Male , Mitochondrial Uncoupling Proteins , Muscles/metabolism , Obesity/genetics , Obesity/surgery , Rats , Rats, Sprague-Dawley
14.
Saudi J Biol Sci ; 28(11): 6645-6652, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1313431

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) was caused by the newly emerged corona virus (2019-nCoV alias SARS-CoV-2) that resembles the severe acute respiratory syndrome virus (SARS-CoV). SARS-CoV-2, which was first identified in Wuhan (China) has spread globally, resulting in a high mortality worldwide reaching ~4 million deaths to date. As of first week of July 2021, ~181 million cases of COVID-19 have been reported. SARS-CoV-2 infection is mediated by the binding of virus spike protein to Angiotensin Converting Enzyme 2 (ACE2). ACE2 is expressed on many human tissues; however, the major entry point is probably pneumocytes, which are responsible for synthesis of alveolar surfactant in lungs. Viral infection of pneumocytes impairs immune responses and leads to, apart from severe hypoxia resulting from gas exchange, diseases with serious complications. During viral infection, gene products (e.g. ACE2) that mediate viral entry, antigen presentation, and cellular immunity are of crucial importance. Human leukocyte antigens (HLA) I and II present antigens to the CD8+ and CD4+ T lymphocytes, which are crucial for immune defence against pathogens including viruses. HLA gene variants affect the recognition and presentation of viral antigenic peptides to T-cells, and cytokine secretion. Additionally, endoplasmic reticulum aminopeptidases (ERAP) trim antigenic precursor peptides to fit into the binding groove of MHC class I molecules. Polymorphisms in ERAP genes leading to aberrations in ERAP's can alter antigen presentation by HLA class I molecules resulting in aberrant T-cell responses, which may affect susceptibility to infection and/or activation of immune response. Polymorphisms from these genes are associated, in global genetic association studies, with various phenotype traits/disorders many of which are related to the pathogenesis and progression of COVID-19; polymorphisms from various genes are annotated in genotype-tissue expression data as regulating the expression of ACE2, HLA's and ERAP's. We review such polymorphisms and illustrate variations in their allele frequencies in global populations. These reported findings highlight the roles of genetic modulators (e.g. genotype changes in ACE2, HLA's and ERAP's leading to aberrations in the expressed gene products or genotype changes at other genes regulating the expression levels of these genes) in the pathogenesis of viral infection.

15.
Heliyon ; 7(2): e06133, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1051652

ABSTRACT

The severity of the new COVID-19 pandemic caused by the SARS-CoV-2 virus is strikingly variable in different global populations. SARS-CoV-2 uses ACE2 as a cell receptor, TMPRSS2 protease, and FURIN peptidase to invade human cells. Here, we investigated 1,378 whole-exome sequences of individuals from the Middle Eastern populations (Kuwait, Qatar, and Iran) to explore natural variations in the ACE2, TMPRSS2, and FURIN genes. We identified two activating variants (K26R and N720D) in the ACE2 gene that are more common in Europeans than in the Middle Eastern, East Asian, and African populations. We postulate that K26R can activate ACE2 and facilitate binding to S-protein RBD while N720D enhances TMPRSS2 cutting and, ultimately, viral entry. We also detected deleterious variants in FURIN that are frequent in the Middle Eastern but not in the European populations. This study highlights specific genetic variations in the ACE2 and FURIN genes that may explain SARS-CoV-2 clinical disparity. We showed structural evidence of the functionality of these activating variants that increase the SARS-CoV-2 aggressiveness. Finally, our data illustrate a significant correlation between ACE2 variants identified in people from Middle Eastern origins that can be further explored to explain the variation in COVID-19 infection and mortality rates globally.

16.
Int J Infect Dis ; 103: 611-616, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1039365

ABSTRACT

OBJECTIVE: The coronavirus disease 2019 (COVID-19) pandemic has caused an exponential rise in death rates and hospitalizations. The aim of this study was to characterize the D614G substitution in the severe acute respiratory syndome coronavirus 2 (SARS-CoV-2) spike glycoprotein (S protein), which may affect viral infectivity. METHODS: The effect of D614G substitution on the structure and thermodynamic stability of the S protein was analyzed with use of DynaMut and SCooP. HDOCK and PRODIGY were used to model furin protease binding to the S protein RRAR cleavage site and calculate binding affinities. Molecular dynamics simulations were used to predict the S protein apo structure, the S protein-furin complex structure, and the free binding energy of the complex. RESULTS: The D614G substitution in the G clade of SARS-CoV-2 strains introduced structural mobility and decreased the thermal stability of the S protein (ΔΔG = -0.086 kcal mol-1). The substitution resulted in stronger binding affinity (Kd = 1.6 × 10-8) for furin, which may enhance S protein cleavage. The results were corroborated by molecular dynamics simulations demonstrating higher binding energy of furin and the S protein D614G mutant (-61.9 kcal mol-1 compared with -56.78 kcal mol-1 for wild-type S protein). CONCLUSIONS: The D614G substitution in the G clade induced flexibility of the S protein, resulting in increased furin binding, which may enhance S protein cleavage and infiltration of host cells. Therefore, the SARS-CoV-2 D614G substitution may result in a more virulent strain.


Subject(s)
COVID-19/etiology , Furin/metabolism , Mutant Proteins/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Humans , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Thermodynamics
17.
Front Pharmacol ; 11: 587451, 2020.
Article in English | MEDLINE | ID: covidwho-1000124

ABSTRACT

COVID-19 is caused by Severe Acute Respiratory Syndrome Coronavirus-2, which has infected over thirty eight million individuals worldwide. Emerging evidence indicates that COVID-19 patients are at a high risk of developing coagulopathy and thrombosis, conditions that elevate levels of D-dimer. It is believed that homocysteine, an amino acid that plays a crucial role in coagulation, may also contribute to these conditions. At present, multiple genes are implicated in the development of these disorders. For example, single-nucleotide polymorphisms (SNPs) in FGG, FGA, and F5 mediate increases in D-dimer and SNPs in ABO, CBS, CPS1 and MTHFR mediate differences in homocysteine levels, and SNPs in TDAG8 associate with Heparin-induced Thrombocytopenia. In this study, we aimed to uncover the genetic basis of the above conditions by examining genome-wide associations and tissue-specific gene expression to build a molecular network. Based on gene ontology, we annotated various SNPs with five ancestral terms: pulmonary embolism, venous thromboembolism, vascular diseases, cerebrovascular disorders, and stroke. The gene-gene interaction network revealed three clusters that each contained hallmark genes for D-dimer/fibrinogen levels, homocysteine levels, and arterial/venous thromboembolism with F2 and F5 acting as connecting nodes. We propose that genotyping COVID-19 patients for SNPs examined in this study will help identify those at greatest risk of complications linked to thrombosis.

18.
Front Immunol ; 11: 576818, 2020.
Article in English | MEDLINE | ID: covidwho-993354

ABSTRACT

COVID-19 is a disease caused by the coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2), known as a highly contagious disease, currently affecting more than 200 countries worldwide. The main feature of SARS-CoV-2 that distinguishes it from other viruses is the speed of transmission combined with higher risk of mortality from acute respiratory distress syndrome (ARDS). People with diabetes mellitus (DM), severe obesity, cardiovascular disease, and hypertension are more likely to get infected and are at a higher risk of mortality from COVID-19. Among elderly patients who are at higher risk of death from COVID-19, 26.8% have DM. Although the reasons for this increased risk are yet to be determined, several factors may contribute to type-2 DM patients' increased susceptibility to infections. A possible factor that may play a role in increasing the risk in people affected by diabetes and/or obesity is the impaired innate and adaptive immune response, characterized by a state of chronic and low-grade inflammation that can lead to abrupt systemic metabolic alteration. SARS patients previously diagnosed with diabetes or hyperglycemia had higher mortality and morbidity rates when compared with patients who were under metabolic control. Similarly, obese individuals are at higher risk of developing complications from SARS-CoV-2. In this review, we will explore the current and evolving insights pertinent to the metabolic impact of coronavirus infections with special attention to the main pathways and mechanisms that are linked to the pathophysiology and treatment of diabetes.


Subject(s)
Adaptive Immunity , Diabetes Complications , Immunity, Innate , Obesity , Respiratory Distress Syndrome , Age Factors , COVID-19/complications , COVID-19/immunology , COVID-19/mortality , COVID-19/therapy , Diabetes Complications/immunology , Diabetes Complications/mortality , Diabetes Complications/therapy , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/mortality , Diabetes Mellitus, Type 2/therapy , Humans , Obesity/immunology , Obesity/mortality , Obesity/therapy , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/therapy , SARS-CoV-2
19.
Life Sci ; 259: 118219, 2020 Oct 15.
Article in English | MEDLINE | ID: covidwho-694410

ABSTRACT

AIMS: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel member of the betacoronaviruses family affecting the lower respiratory tract mainly through binding to angiotensin converting enzyme 2 (ACE2) via its S-protein. Genetic analysis of (ACE2) gene revealed several variants that have been suggested to regulate the interaction with S protein. This study investigates the N720D variant, positioned in the collectrin-like domain (CLD) at proximity to type II transmembrane serine protease (TMPRSS2) cleavage site. MAIN METHODS: The effect of N720D variant on ACE2 structure and thermodynamic stability was studied by DynaMut. HDOCK was utilised to model TMPRSS2 protease binding to ACE2 WT and D720 variant cleavage site. PRODIGY was used to calculate binding affinities and MD simulation tools calculated the at 100 ns for ACE2 apo structure and the ACE2-TMPRSS2 complex. KEY FINDINGS: The N720D variant is a more dynamic structure with a free energy change (ΔΔG): -0.470 kcal/mol. As such, introducing a tighter binding affinity of Kd = 3.2 × 10-10 M between TMPRSS2 and N720D variant. RMSD, RMSF calculations showed the N720D variant is less stable, however, RMSF values of the D720-TMPRSS2 complex reflected a slower dynamic motion. SIGNIFICANCE: The hotspot N720D variant in the CLD of ACE2 affected the stability and flexibility of ACE2 by increasing the level of motion in the loop region, resulting in a more favourable site for TMPRSS2 binding and cleavage. Consequently, this would facilitate S-protein binding and can potentially increase viral entry highlighting the importance of variants affecting the ACE2-TMPRSS2 complex.


Subject(s)
Betacoronavirus/metabolism , Peptidyl-Dipeptidase A/metabolism , Serine Endopeptidases/metabolism , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/enzymology , Coronavirus Infections/genetics , Coronavirus Infections/virology , Humans , Lung/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/enzymology , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , Polymorphism, Single Nucleotide , Protein Binding , SARS-CoV-2 , Thermodynamics
20.
Mol Ther Methods Clin Dev ; 18: 321-327, 2020 Sep 11.
Article in English | MEDLINE | ID: covidwho-613810

ABSTRACT

The mechanism for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires the binding of the virus to the angiotensin-converting enzyme 2 (ACE2) receptor, well-known for its role in counteracting ACE. ACE2 is involved in modulating blood pressure and establishing blood pressure homeostasis. Recently, a critical debatable question has arisen whether using antihypertensive medications will have a favorable impact on people infected with SARS-CoV-2 or a deleterious one, mainly because angiotensin-converting enzyme inhibitor (ACEI) and angiotensin-receptor blocker (ARB) therapy can modulate the expression of ACE2 protein. The concern is that the use of ACEIs and ARBs will increase the expression of ACE2 and increase patient susceptibility to viral host cell entry and propagation. On the other hand, several genetic association studies have examined the relationship between ACE2 genetic variants and the risk of developing hypertension in different ethnic populations. In this review, we discuss the ongoing arguments in the literature about ACE2's role in mortality rate among coronavirus disease 2019 (COVID-19) patients comorbid with hypertension and critically evaluate the current debate about the usage or discontinuation of ACEI/ARB antihypertensive drugs. Moreover, we explore the two opposing roles that ACE2 genetic variants might be playing in COVID-19 by reducing ACE2 receptor effectiveness and mitigating SARS-CoV-2 infectivity.

SELECTION OF CITATIONS
SEARCH DETAIL